Domains of Competence of Artificial Neural Networks Using Measures of Separability of Classes
نویسندگان
چکیده
In this work we want to analyse the behaviour of two classic Artificial Neural Network models respect to a data complexity measures. In particular, we consider a Radial Basis Function Network and a MultiLayer Perceptron. We examine the metrics of data complexity known as Measures of Separability of Classes over a wide range of data sets built from real data, and try to extract behaviour patterns from the results. We obtain rules that describe both good or bad behaviours of the Artificial Neural Networks mentioned. With the obtained rules, we try to predict the behaviour of the methods from the data set complexity metrics prior to its application, and therefore establish their domains of competence.
منابع مشابه
Shared domains of competence of approximate learning models using measures of separability of classes
In this work we jointly analyze the performance of three classic Artificial Neural Network models and one Support Vector Machine with respect to a series of data complexity measures known as measures of separability of classes. In particular, we consider a Radial Basis Function Network, a Multi-Layer Perceptron, a Learning Vector Quantization, while the Sequential Minimal Optimization method is...
متن کاملA hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry
For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...
متن کاملSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کاملPrediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks
In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi ), wall heat flux (qnw ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کامل